Third Annual
Small World Initiative Symposium
at
American Society for Microbiology
(ASM Microbe 2016)

SWI TAPAS Presentations
From right to left

Erika Kurt, SWI President and CEO

Jo Handelsman, SWI Founder

Nichole Broderick, SWI Partner Instructor Lead

Symposium Organizing Committee

Jean Schmidt
University of Pittsburgh

Mustafa Morsy
University of West Alabama

Betsy Roberts
Southern Connecticut State University

Eric Warrick
State College of Florida
About the Small World Initiative

Formulated at Yale University in 2012 by the current Associate Director of Science at the White House, Jo Handelsman, the Small World Initiative™ (SWI) is an innovative program that encourages students to pursue careers in science while addressing a real-world health threat – the diminishing supply of effective antibiotics. SWI centers around an introductory biology course in which students perform hands-on field and laboratory research on soil samples in the hunt for new antibiotics. Through a series of student-driven experiments, students collect soil samples, isolate diverse bacteria, test their bacteria against clinically-relevant microorganisms, and characterize those showing inhibitory activity. This is particularly relevant as over two thirds of antibiotics come from soil bacteria or fungi.

SWI’s novel approach harnesses the power of active learning to achieve both educational and scientific goals and provides a unique and sustainable platform to replenish the antibiotic pipeline by identifying suitable candidates for testing. Currently, SWI’s course is in 108 schools (98 colleges) across 33 US states, Puerto Rico, and ten additional countries – Belize, Canada, Iraq, Ireland, Jordan, Malaysia, Nigeria, the Philippines, and the UK, and has impacted more than 8,000 students.
Leveling down-SWI the Summer Camp Experience

Michael Buckholt, Ph.D.
Worcester Polytechnic Institute

What We Do:
• 2 weeks (actually 8 days)
• ~20 students (campers)
• Welcome letter with warning and waiver
• 1 assistant (usually a former SWI student)
• Lots of liquid nitrogen

What I Can Say:
• Can get results in 8 days
• Good with big concepts without all of the content details
• Recruits students for the university and the department
SWI Biosafety Updates

Kristen Butela, Ph.D.
Seton Hill University

SWI Biosafety Updates

- Updated Student Guide, Instructor Guide, and Research Protocols
- Biosafety Training Powerpoint with training activities
- How to upgrade BSL-1 lab to BSL-2 standards
- Information on regulations for handling potential human and plant pathogens, soil transport, mailing strains, etc.
- Recommendations for immunocompromised students
Small World Initiative alluring Latin@s into Research
Lilliam Casillas, Ph.D.
Universidad de Puerto Rico-Humacao

Small World Initiative
Integrated Labs: (1) Molecular and Cell Biology Lab – Until bacterial ID’s of isolates producing antimicrobials.
(2) Introduction to Biotechnology – Chemical Characterization of antimicrobials.
Laboratory Manuals were translated to Spanish
Access to research to all students in the class = Equity

Cybernetic girls can be pinky
Equity in the classroom
Culturally sensitive
Gender differences in Computational Biology
Empowering Afro decedents
White Fragility
https://www.aacu.org/tides

Semester course
4 days workshop

cienciapr.org
The Microbial World: the benefits of an SWI course on non-science major students

Debra Davis, Ph.D.
Wingate University
More Than Just D.I.R.T.T: Piloting the SWI Hunt for Antibiotics in High School

Barbara Fishel, Ph.D.
The Hockaday School

Hockaday’s goals matched the SWI approach
• Introduce principles of general biology through authentic research and inquiry-based learning.
• Develop scientific thinking skills.
• Increase confidence and interest in pursuing science.

Student outcomes exceeded expectations
• Invested in goals of SWI and our course.
• Repetition generated ownership of learning, reflected in engagement and performance.
• All nine students reported they applied the biology they learned when designing experiments and interpreting results.
Affordable whole-genome sequencing of 2 novel marine antibiotic producers

Brittany J. Gasper, Ph.D.
Florida Southern College

Extension of SWI Research

- You found something cool! Now what?
- Whole genome sequencing and ANI
 - Less expensive than you think!
- Multilocus sequence analysis (MLSA)
 - Genus specific
- Polyphasic Analysis
 - FAME, biochemical, etc.

![Graph showing genetic distance and ANI](image)
Antimicrobial Agents: What’s in the Label

Mary Miller, Ed.D.
Baton Rouge Community College

A Classroom Activity

Objective: To expose students to content they will see in their lives, and apply what they have learned to understand mechanisms of actions and susceptibility tests.

- Pair and share
- 15-20 minutes

Pre-requisites
- Prokaryote cell structure and function
- DNA replication and Protein Synthesis

Students find the following information and share with the class:
- Description
- Microbiology
- Susceptibility
 - Kirby-Bauer
 - MIC
- Adverse Reactions

AUGMENTIN®
(amoxicillin/clavulanate potassium)
Tablets

To reduce the development of drug-resistant bacteria and maintain the effectiveness of AUGMENTIN (amoxicillin/clavulanate potassium) and other antibacterial drugs, AUGMENTIN should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.
High Throughput Antibiotics Screening

Mustafa Morsy, Ph.D.
The University of West Alabama

100 mm Petri dishes

96-well plate (0.5ml)

96-well Pin Replicator

150 mm Petri dishes
What does your backyard look like?
At State College of Florida – Bradenton, Florida I’ve adapted the SWI curriculum to focus on marine antibiotic producing bacteria.

What do you need to culture marine bacteria?

- Supplement the media 0.5M NaCl (PDA, LB, TSA, and R2A)
- Marine Agar

How will the tester strains grow on the media supplemented with 0.5M NaCl?

<table>
<thead>
<tr>
<th>Tester Strain</th>
<th>Gram Reaction / Cellular Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>Gram Positive – Rod</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>Gram Positive – Cocci</td>
</tr>
<tr>
<td>Chromohalobacter salexigens</td>
<td>Gram Negative – Rod</td>
</tr>
<tr>
<td>Vibrio fischeri</td>
<td>Gram Negative – Rod</td>
</tr>
<tr>
<td>Vibrio anguillarum</td>
<td>Gram Negative – Rod</td>
</tr>
</tbody>
</table>

What Have We Found?

- Vibrio species
- Pseudoalteromonas species
- Photobacterium species
- Halobacillus species
- Streptomyces species
- Halomonas species
- Zooshikella species
Identification of a Biosurfactant by way of the SWI

Elizabeth Lewis Roberts, Ph.D.
Southern Connecticut State University

[Diagram showing bacterial strains and their response to drought severity]

[Graph comparing Big R and Black Krim in drought severity]

[Images of atomized oil droplet assay]

[A] [B] [C] [D]
Small World Initiative™
CROWDSOURCING ANTIBIOTIC DISCOVERY

www.smallworldinitiative.org